References

13. HEMOLUNG RAS Registry (data on file).
Extracorporeal CO₂ Removal (ECCO₂R) provides an alternative or supplement to mechanical ventilation by removing carbon dioxide directly from the blood, reducing the risk of ventilator-associated events and facilitating lung rest, protection, and ultimate recovery.¹

REDUCING THE NEED FOR MECHANICAL VENTILATION WITH RESPIRATORY DIALYSIS
A Minimally Invasive Approach to ECCO₂R

Respiratory Dialysis is a simple, minimally invasive approach to ECCO₂R only available with the HEMOLUNG RAS. The system can remove 30-50% of metabolically produced CO₂, reducing ventilation requirements in patients who are either failing non-invasive ventilation (NIV) or who are already invasively ventilated.

Unlike extracorporeal membrane oxygenation (ECMO), Respiratory Dialysis is not a rescue therapy. In fact, the simplicity and minimally invasive nature of the HEMOLUNG RAS allow it to be used much earlier, even before intubation and IMV.

Applications for Respiratory Dialysis

PRE-VENTILATOR
The HEMOLUNG RAS is used in cases of acute exacerbation of COPD when non-invasive ventilation is failing and invasive mechanical ventilation is considered undesirable. By removing CO₂ directly from the blood, Respiratory Dialysis reduces ventilation requirements and provides relief of dyspnea, interrupting the cycle of respiratory failure before it leads to intubation and invasive mechanical ventilation.

ACUTE AND CHRONIC ON VENTILATOR
The HEMOLUNG RAS enables the application of protective and ultra-protective ventilation strategies, minimizing the risk of ventilator-induced lung injury (VILI) without the complexity and invasiveness of ECMO. Ultra-low tidal volumes and plateau pressures are made possible while the patient’s CO₂ level is easily controlled.

Stop the Downward Spiral of Respiratory Failure
LUNG INJURY OR ACUTE DECOMPENSATION
Pre-Ventilator
Acute on Ventilator
Chronic on Ventilator
RESPIRATORY FAILURE

RESPIRATORY DIALYSIS:
Providing new options for the treatment of acute respiratory failure.

Respiratory Dialysis

Rest the Lungs. Recover the Patient.

Respiratory Dialysis rapidly corrects respiratory acidosis and hypercapnia, relieves dyspnea, and reduces work of breathing, helping COPD patients failing noninvasive ventilation (NIV) to rest and recover while their exacerbation is treated. For COPD patients already mechanically ventilated, Respiratory Dialysis can facilitate more protective ventilation settings, such as lower minute ventilation to reduce dynamic hyperinflation.

The deleterious side effects of IMV in acute exacerbation of COPD (AE-COPD) patients are well known, with a 29% in-hospital mortality rate.\(^5\) These side effects include intubation complications, tracheostomies, sedation that prevents communication, inability to take oral fluids or nutrition, lack of mobility, neurological disorders, and ventilator associated pneumonia (VAP). VAP is a significant complication that affects up to 25% of patients on IMV and has a mortality rate of 60-64%.\(^5\) These patients can suffer from dynamic hyperinflation leading to cardiopulmonary compromise, and often experience ventilator dependency and prolonged weaning. The risk of mortality increases with every day on the ventilator.

Avoiding IMV decreases mortality rates in AE-COPD patients by 50-69%\(^6\) and reduces ICU length of stay by 3 days.\(^7\) According to a recent study, patients with NIV failure avoided intubation with Respiratory Dialysis, and the HEMOLUNG RAS was well tolerated.\(^8\)

“The very early application of this technique in patients with…chronic obstructive pulmonary disease exacerbations may prevent the need for mechanical support.”

Respiratory Dialysis with the HEMOLUNG RAS effectively facilitates lung protective ventilation strategies while mitigating the adverse effects of respiratory acidosis and hypercapnia that can develop when minute ventilation is reduced. Protective tidal volumes and pressures can be achieved while maintaining control of the CO₂ levels. Evidence even suggests that “ultra-protective” ventilation, with tidal volume < 6 ml/kg and PPLAT < 30 cmH₂O, may also be beneficial, further reducing ventilator induced lung injury (VILI).\(^9\)

“The use of very low VT combined with extracorporeal CO₂ removal has the potential to further reduce VILI compared with a ‘normal’ lung protective management.”

Effect of Respiratory Dialysis in AE-COPD

- **Benefits of Respiratory Dialysis in Exacerbated COPD**
 - Avoid intubation and mechanical ventilation
 - Rapidly correct hypercapnia
 - Relieve dyspnea
 - Reduce work of breathing
 - Improve respiratory mechanics—reduce minute ventilation and dynamic hyperinflation
 - Patients remain awake and mobile, with increased quality of life

When to Use Respiratory Dialysis in AE-COPD

- **AE-COPD Patients Failing NIV**
 - Respiratory Dialysis can be used in patients failing NIV for whom intubation, and mechanical ventilation are deemed undesirable. To prevent intubation, Respiratory Dialysis should be initiated as soon as the patient shows signs of NIV failure.

Indicators of NIV Failure in AE-COPD\(^10\)

- \(pH < 7.25\)
- \(PaCO_2 > 55\) mmHg
- \(pH < 7.3, PaCO_2 > 55\) mmHg without improvement on NIV
- Worsening acidosis
- Increasing respiratory rate
- Clinical signs of respiratory muscle fatigue or increased work of breathing

Algorithm for ARDS Patients

My Patient is Difficult to Ventilate

- Attempting ARDSnet Ventilation
 - \(TV < 6\) mL/kg
 - \(P_{PPlate} < 30\) cmH₂O

My Patient Needs Ultra-Protective Ventilation

- Ultra-Protective Ventilation Desired but not possible without respiratory acidosis
- HEMOLUNG RAS

Hemolung RAS

- Safely allows tidal volume and plateau pressure to be reduced while maintaining normocapnia
- Reduces time on mechanical ventilation (in patients with P/F < 150)
- Facilitates lung protection as evidenced by improved morphological markers of lung protection and the reduction of pulmonary cytokines
- Improves spontaneous breathing
- Reduce the need for sedatives and analgesics

Benefit of Respiratory Dialysis in ARDS\(^11\)

<table>
<thead>
<tr>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reduces time on mechanical ventilation (in patients with P/F < 150)</td>
</tr>
<tr>
<td>- Facilitates lung protection as evidenced by improved morphological</td>
</tr>
<tr>
<td>markers of lung protection and the reduction of pulmonary cytokines</td>
</tr>
<tr>
<td>- Improves spontaneous breathing</td>
</tr>
<tr>
<td>- Reduce the need for sedatives and analgesics</td>
</tr>
</tbody>
</table>

Effect of HEMOLUNG RAS in ARDS Patients

- **Effect of Respiratory Dialysis on NIV Failure Avoided Intubation**
 - **24 HOURS ON HEMOLUNG**
 - **PRE-HEMOLUNG**
 - **HLM (mg/kg)**
 - **VT Combined with Extracorporeal CO₂ Removal**
 - **Normocapnia**
 - **Respiratory Acidosis**
 - **Hypercapnia**

APR-RESPIRATORY DIALYSIS ALGORITHM

- **ARDS Patients**
 - **Patient Difficult to Ventilate**
 - \(pH < 7.3\) or \(P_{PPlate} < 30\) cmH₂O or respiratory acidosis causing complications
 - **Start Respiratory Dialysis to Facilitate Protective Ventilation**
 - **Ultra-Protective Ventilation Desired but not possible without respiratory acidosis**
 - **Start Respiratory Dialysis**
 - \(TV < 6\) mL/kg, \(P_{PPlate} < 30\) cmH₂O in accordance with clinical needs

References

The HEMOLUNG RAS is the world’s first fully integrated Respiratory Dialysis system, providing simple, minimally invasive ECCO₂R. An alternative or supplement to mechanical ventilation, the HEMOLUNG RAS removes CO₂ directly from the blood, allowing the patient’s lungs to rest and heal.

“Compared with ECMO systems used for full respiratory or cardiopulmonary support, the HEMOLUNG was substantially simpler to operate.”

Safe, Simple, and Effective Extracorporeal CO₂ Removal

SIMPLE AND EASY TO USE
A combination of advanced technology and thoughtful design make the HEMOLUNG RAS easy to use. Simplicity starts with an integrated design approach: the HEMOLUNG Cartridge, Catheter, and Controller work together seamlessly.

- A continuous measurement of HEMOLUNG CO₂ removal is provided, simplifying monitoring and titration of therapy.
- The HEMOLUNG blood circuit is fully closed for safety and simplified priming.
- Smart gas-flow controls reduce workload and enable mobility without a gas source.
- On-screen instructions make setup and priming fast and easy.

HIGHLY EFFICIENT
The HEMOLUNG RAS is the only device offering highly efficient extracorporeal CO₂ removal at dialysis-like blood flow rates. Efficient CO₂ removal at low blood flow rates is the key to making ECCO₂R less invasive, enabling the use of a small venous catheter.

- ActivMix technology provides enhanced CO₂ removal at low blood flow rates.
- Integrated centrifugal pump flows 150–550 mL/min with HEMOLUNG 15.5 Fr Catheters.
- Steady gas exchange is ensured with automatic membrane condensation removal.
- An advanced membrane coating (siloxane/heparin) reduces thrombus formation and prevents plasma leakage, ensuring reliable performance.

MINIMALLY INVASIVE
The HEMOLUNG RAS provides uniquely effective CO₂ removal at blood flow rates of just 150–550 mL/min, allowing the use a single 15.5 Fr dual lumen venous catheter, the smallest of any ECCO₂R system. Patient mobilization is made possible, particularly when the jugular catheter is used.

- Only a single 15.5 Fr venous catheter is required to provide HEMOLUNG therapy.
- The HEMOLUNG Catheter is inserted using a standard Seldinger technique, just like the acute dialysis catheters.
- To improve biocompatibility, priming volume and membrane surface area are minimized.

Ready to optimize ventilation for your patients with acute respiratory failure?

CONTACT ALUNG TO LEARN MORE ABOUT PROVIDING RESPIRATORY DIALYSIS WITH THE HEMOLUNG RAS.
References

13. HEMOLUNG RAS Registry (data on file).